
Journal of Engineering Physics and Thermophysics, Vol. 72, No. 1, 1999 

S C A T T E R I N G  O F  R A D I A T I O N  I N  

T U R B U L E N T  M E D I U M  

E. I. Lavinskaya, E. F. Nogotov, and 
N. A. Fomin 

A N  A N I S O T R O P I C  

UDC 535.311+536.24 

Scattering of laser radiation on density fluctuations in propagation of radiation through an anisotropic 

turbulent medium is analyzed. It is shown that the deviation angles in turbulent gas flows at atmospheric 

pressure equal -10 - 5 - 1 0  -4 rad and can be detected by means of speckle photography. A statistical analysis 

of two-dimensional fields of deviation angles makes it possible to evaluate three-dimensional density 

correlation functions in a turbulent flow. It is shown that taking account o[ the turbulence anisotropy leads 

to distributions of the laser-radiation intensity over deviation angles that deviate substantially from the 

Gaussian distribution. 

Laser-radiation transport through a turbulent medium and its scattering have repeatedly been the subject 

of analysis [1-4]. Generally, scattering is described by the Maxwell equations for electromagnetic waves. 

Propagation and scattering of short waves can be described successfully by methods of geometrical optics based on 

use of the ray equation. 
The approximation of geometrical optics is traditionally used to solve problems of aerothermooptics where 

the flows are laminar [5 ]. Calculations of laser-radiation transport through a turbulent medium can also be carried 

out within the framework of the geometrical-optics approximation [ 1 ]. In this case, it should be postulated that the 

dimensions of the inhomogeneities in the medium are large compared to the radiation wavelength, i.e., It >> ~, 

where It is the characteristic turbulence microscale determined, e.g., from the correlation function of density 

pulsations and 2 is the radiation wavelength. As has been shown by a recent analysis [6 ], the restrictions on the 

applicability of geometrical optics also apply to the dimensions of the turbulent medium L through which the 

radiation propagates. 
This condition can be written as follows: 

L<<f,/a. (1) 

It is evident from relationship (1) that for the characteristic size L -0 .1  m (laboratory modeling of turbulence) the 

minimum sizes of turbulence microscales whose effect on radiation propagation is described within the framework 

of geometrical optics are -< 1 ram. This value also corresponds well to both the spatial resolution of speckle 

photography and modern possibilites of computer simulation of turbulence. Thus, three-dimensional fields of gas- 

dynamic parameters were calculated by Gerz et al. [7 ] on grids with dimensions up to 160 x 160 x 160 using the 
direct numerical simulation (DNS) method. Such a high spatial resolution achieved in these calculations made it 

possible to describe small-scale turbulent vortices with Reynolds numbers based on I t of the order of I00. However, 

to accomplish this, Gerz et al. had to use a computer with the presently maximum possible RAM size. 
We calculated propagation of radiation through a turbulent medium on a 64 x 64 x 64 grid using 

turbulence-field data obtained by the DNS method [7 ] that were kindly provided by Dr. Gerz. 

The equation of radiation propagation within the geometrical-optics approximation (the eikonal equation) 

in differential form is as follows: 
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Fig. 1. Geometry of the problem: a) collimated laser radiation; b) turbulent 

flow; c) intensity distribution in the far-field zone; d) trajectories of light rays 

in the turbulent-flow region. 

d--s n (r) = Vn ( r ) ,  (2) 

where r(s) is the radius vector of a point located on the light ray. Here r = xi + yj + zk and ds is the e lementary 

arc length along the ray. We introduce the following notation: 

d s ,  ds dr 
- -  d t = - -  T = - -  (3) t = f  n n ' dt"  

Equation (2) can then be written as follows: 

d 2 r - n V n ( r )  or d2r = l v n  2 ( r ) .  (4) 
dt 2 dt 2 2 

The coordinates of the vector T are direction cosines: 

dr dr dx dy j + n dz 
T =  d---t= n ~ =  n- -~  i + n ds ds k =  n c~ ai + n c~ flj + n c~ T k '  

where a ,  fl, and 7 are the angles between the ray direction and the x-, y-, and z-axes, respectively. 
The  ray trajectory was calculated by the R u n g e - K u t t a  method. The current coordinates and inclination 

angles of the ray were calculated for small increments At = l / n A s  [8 ]: 

[ ] I ( A + 4 B _ C )  (5) 1 (A + 2B) Tn+ 1 = T n + - ~  R n + l  = Rn  + A t  T n + - ~  , 

where 

A = AtD (Rn) ; (6) 

At 1 ) 
B = AtD Rn + - ~  Tn + g AtA ; 

C = A t D  R n + A t T  n +  AtB ; 

R = ; T =  Ty =- n d y / d s l  ; 
T z d z / d s )  

(7) 

(8) 

(9) 

101 



O.8 

0 

a5 

+ - X ~ 

0.5 -~ 

0 2 4 6 8 / 0 m  
& 

O.5 

0 2 4 6 8 1 0 m  0 2 4 6 8 / 0 m  
Fig. 2. Two-point density correlation functions for a turbulent flow along 

different coordinate axes (a) (m is the cell number along the corresponding 

axis), correlation functions of the density and deviation angles of light rays 

in a turbulent flow along the x-, y-, and z-axes (b, c, and d, respectively); 

1) deviation-angle function calculated by direct numerical simulation; 2) 

density function calculated from Dr. Gerz's data for the corresponding 

coordinate; 3) density function recovered from deviation angles using the 

Ehrbeck- Merzkirch integral). 

D = n  On/Oy[ ~ ~ (n2)/Oy 
On/Oz) (n2)/Oz 

Using the above notation, we can write the trajectory equation in matrix form: 

(1o) 

d2R 
- D ( R ) .  (11)  

dt 2 

Figure 1 presents the geometry of the problem and results of direct numerical simulation for a light wave 

propagating through different cross sections of a turbulent flow. The turbulent-field variations have been 

intentionally enhanced by a factor of 100 to visualize the optical rays. It is evident from results of calculations that 

the deflection angles e of the optical rays in a turbulent medium with L - 0 . 1  m and a level of temperature 
fluctuations ~/(T 2) - 5 - 1 0  K equal 10 - 4 - 1 0  -5 rad, which corresponds quite well to the sensitivity range of both 

double- and single-exposure speckle photography. A statistical analysis of the deflection-angle field shows that (e) 

-" 0 when the number of cells in the grid exceeds 30 x 30. For the 64 x 64 grid used in the calculation of the 

two-dimensional field of light-ray deflection angles, the "residual" values of the average fluctuating quantities do 

not exceed 1%. 
Figure 2 presents results of calculations of correlation functions for the original density field in a three- 

dimensional turbulent flow and deflection angles in the resulting two-dimensional map. A comparison of these 

functions indicates that correction of experimental data by an integral transform should be used to recover the 

three-dimensional correlation function from data on the two-dimensional correlation function obtained from speckle 

photography, as has been described earlier [9]. The same figure shows density correlation functions calculated 

from light-ray deviation angles using such an integral transform. It is evident that they tend to approach the original 
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Fig. 3. Distribution of radiation intensity (arbitrary units) over deviation 

angles (rad) in propagation of collimated laser radiat ion through an 
anisotropic turbulent medium (deviation angles along the x-, y-, and z-axes 

(a, b, and c) were calculated for corresponding central cross sections of a cube 

(y - z), ix - z), and ix - y) for 64 probing lines), and comparison of root- 

mean-square deviations of light rays with root-mean-square pulsations of the 
refractive index for all 15 variants of the calculations (d). 

density correlation functions obtained from turbulence simulation by the DNS method. Especially good agreement 

is evident for small-scale turbulence for a vortex size close to It. Disagreement of the correlation functions is 
observed for vortex sizes exceeding 10-15 It. 

Thus, results of direct numerical simulation of propagation of laser radiation in a turbulent medium 

demonstrate the possibility in principle of evaluation of three-dimensional correlation functions of a turbulence field 

from experimental data obtained by the speckle-photography technique. To provide a statistical analysis of the 

experimental quantities described, automated transfer of them to a computer with a density corresponding to grids 
with dimensions of no less than 64 x 64 is required. 

The presence of pulsations leads to additional radiation scatter that can be characterized by the root-mean- 

square deviation angle. As has been shown in [2 ], this quantity can be calculated as an integral of the gradient of 
the density correlation function Rp(r): 

(Ae2) = -  (An2)LK ~0 L d ( r 2 d R p ( r ) )  2 dr dr (12) 

where K is the Gladstone-Dale constant, and n is the refractive index, 

(n - 1) = Kp.  (13) 

For the particular case of a density correlation function approximated by the Gaussian function 

Rp (r) = exp (-- r2/~) , (14) 

relationship i12) can be solved analytically: 
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L (a, 2) _- (an 2) (15) 

where L~ is the turbulence macroscale. 

Thus, for isotropic turbulence, the root-mean-square deviation of the scattering angle is determined by the 

root-mean-square density pulsations in the turbulent flow. Relationship (15) is basic for measurements of the 

intensity of turbulent pulsations by single-exposure speckle photography with an extended exposure time [ 10 ]. We 

verify the validity of relationship (15) by direct numerical simulation of refraction in a turbulent medium based on 

the geometrical-optics approximation. 
Flow anisotropy was determined from results of calculations of density correlation functions along different 

coordinate axes. Figure 3 presents results of calculations of light-ray propagation for a flow with maximum 

anisotropy. This variant simulates shear flow with a refractive-index gradient along the z-axis. Trajectories of 

light rays propagating through a turbulent flow are presented in [11 ]. For clarity, the light-ray deviation angles 

e are multiplied by a factor of 104 in Fig. 3a, b, and c. Here the root-mean-square pulsations of the refractive 
index along the x-, y-, and z-axes were equal to (An2)yz ~ 6.93.10 -8, (An 2) xz = 0.690.10 -7, and (An2)xy -- 

0.693- 10 -7, respectively, and the corresponding root-mean-square deviations of the light rays were equal to (Ae2)x 

= 0.57.10-10, (Ae2)y = 0.402.10 -9, and (Ae2)z = 0.938.10 -9, respectively. 

As is shown by histograms, the distribution of light rays over deviation angles has an irregular character 

that is individual for each particular realization of the cross section of the refractive-index field in the turbulent 

flow. It should be noted that the (64 x 64-cell) grid used in calculations of deviation angles corresponds well to 

the spatial resolution of speckle photography [11 ]. Modern automated specklogram-processing systems based on 

PC-coupled CCD-arrays make it possible to recover the vector field of deviation angles of light rays on grids with 

dimensions of (50 x 50) ... (100 x 100) and higher, thus providing recovery of three-dimensional correlation 

functions (of, e.g., density) from experimentally determined two-dimensional correlation functions of light-ray 

deviation angles [12 ]. 
Figure 3d presents final results of calculations for 15 cross sections (three cross sections for each of five 

variants) in the form of the dependence (Ae 2) ((An2)) (for clarity, all values are multiplied by a factor of 108). 

These data show that relationship (15) holds only approxinately and the deviation of results of calculations from 

the theoretical dependence can be substantial for an anisotropic flow. The laser-radiation divergence in the far-field 

zone for a single passage of radiation through an active laser medium will be determined by a two-dimensional 

Fourier transform of the radiation amplitude at the resonator exit. In the case of absence of turbulent pulsations, 

the divergence can be determined only by the diffraction on the aperture D and can be expressed in terms of the 

squared Bessel function of the first order: 

Idi f (e) = I 0 J l  �9 (16) 

For isotropic turbulence, we describe the effect of refractive -index pulsations on radiation divergence in 

terms of the turbulence microscale It [2 ]: 

I t(e) = I  0exp - 4 - ~ )  " (17) 

As is evident, in this case radiation divergence is described by a Gaussian function. In cases where the effect of 

turbulence is small, the intensity distribution in the far-field zone can be obtained as a convolution of distributions 

(16) and (17). For intense turbulent pulsations, the diffraction component (16) can be neglected and radiation 

divergence can be described by relationship (17). At the same time, as is shown by results of direct calculations 
presented in Fig. 3, the intensity distribution for anisotropic flows can deviate substantially from a Gaussian 

distribution. Numerous additional maxima are distinguished in the angular distributions obtained, which increase 

the divergence of the laser radiation. Thus, taking account of the turbulence anisotropy is sufficient for 
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determination of the actual picture of radiation divergence in flow laser systems with a high level of turbulent 

pulsations. 
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